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The effect of such variables as size of basis set, number of S and P type functions in the basis set,
size of initial exponent in the basis set, size of multiplicative factor in the geometrical progression of
exponents, and interatomic distance has been examined by a self-consistent-field calculation with
Gaussian orbitals on HeH*. A quasi-optimized wave function has been obtained by allowing only
the initial exponent and multiplicative factor to vary in the optimization process.

Introduction

Theoretical work in this laboratory has been concerned in part, with the
physical nature of the chemical bond [10]. It seemed reasonable and appropriate,
in connection with the studies, to initiate work on the bonds in simpler molecules,
particularly those where the influence of increasingly better wave functions and
size of basis set could conveniently be examined. The simplest molecule con-
taining a heteronuclear two-electron bond is the molecule HeH", the helium
hydride ion. In the process of performing preliminary calculations on this molecule
using Gaussian basis functions, for later use in investigations on bonds, it became
apparent that HeH”, because of its heteronuclear nature, its small number of
electrons, and its diatomic nature, was an interesting molecule on which to test
various effects in Gaussian SCF calculations.

In any calculations with Gaussian functions, which of necessity will be in
larger number than in a corresponding calculation with Slater orbitals, there are
two important problems, one associated with methods of contraction of the
basis set, and the other with optimization of exponents. Much of the recent work
involving Gaussian functions has been directed toward extension to larger
molecules [1, 2, 11, 15]. Although Clementi [2] has developed an interesting
technique for the contraction of basis sets of Gaussian functions, much of this
recent work on large molecules has been done by selecting a relatively small
number of basis functions per atom. Although values for the electronic energies
which are obtained in this latter way are usually not very good, calculated values
of other molecular properties are often surprisingly close to the experimental
ones. Hence, it seems apparent that this method of optimization and the effects
of optimization on various sizes of basis sets is important in order to demonstrate
to what extent the calculations using a small basis set can be conveniently improved
by at least a partial optimization of exponents.
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In addition, most of the work involving Gaussian functions has so far employed
basis sets containing only s and p type functions, presumably since, with the
smaller basis sets employed for the larger molecules, a larger decrease in energy
would be obtained in general by the addition of one s or one p type function than
by the addition of one d type function. It is likely that as attempts are made in the
future to extend Gaussian calculations of wavefunction to larger molecules,
much of the work will still be restricted to s and p type functions. Hence, for the
present work it seemed reasonable and desirable to examine the results of optimi-
zation on a small molecule using basis sets of s and p type Gaussians only. It is
hoped to show, among other things, to what extent one can approach the results
obtained with large basis sets of Gaussian functions with or without optimization
by using smaller basis sets with optimization. The advantage of using a small
molecule such as the helium hydride ion for such calculations can then be seen.
Good values of the electronic energy from calculations involving other than
Gaussian functions are available for comparison. The number of electrons is
small enough so that the ratio of Gaussian functions to electrons can be made
quite large to provide data to compare with the results from smaller basis sets.

The present paper is concerned with the examination of the influence of
certain variables on the results of the calculation, that is, on such quantities as the
orbital energies, and the total electronic energy. The variables considered were
(a) size of basis set of Gaussian functions, (b) number of s and p type functions
in the basis set, (c) size of initial exponent for each of s and p types, while main-
taining the exponents in a fixed geometrical progression, (d) size of multiplicative
factor in geometrical progression for each of s and p types, and (e) interatomic
distance (I.D.).

The first identification of the singly charged helium hydride molecular ion
apparently occurred about 1925 [6] at which time it was found in mass-spectro-
metric experiments. Since that time many quantum-mechanical calculations have
been done. Table 1 records the equilibrium interatomic distance, the total elec-
tronic energy, for that distance, and the associated orbital energy, from some
of the more recent of these calculations. Michels [8] has compiled an excellent
and apparently complete bibliography of calculations on HeH™ prior to those
given in Table 1. It should be mentioned here that the work of Schwartz and

Table 1. Recent calculations on the ground X state of HeH™

Equilibrium Total Orbital Reference

Interatomic Electronic Energy

Distance Energy

(a.u.) (a-n.) (a.u.)

14 —2.93043 —1.65934 Schwartz and Schaad [16]
1.44 —2.9433 — Harris [S]

14 ~2.93251 — Hoyland [7]

1.40 —2903 —1.633 Gallup and McKnight [4]
1.44 —2.94321 — Michels [8]

1.455 —2.933126 —1.63748 Peyerimhoff [12]

1.455 —2.930206 —1.6358 Moffat (this work)
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Table 2. Helium atom exponents

s exponents p exponents

Exponent Initial Multiplying Exponent Initial Multiplying
Set Number Exponent Factor Set Number Exponent Factor
HeS1 0.0100 3.16 HeP1 0.0160 3.00
HeS?2 0.0280 2.50 HeP2 0.0160 3.44
HeS3 0.0280 3.14 HeP3 0.0160 4.00
HeS4 0.0280 3.86 HeP4 0.0160 4.50
HeS41 0.0280 3.20 HePS5 0.0160 5.00
HeS42 0.0280 3.30 HeP51 0.0320 4.00
HeS43 0.0300 3.00 HeP6 0.0030 3.46
HeS44 0.0300 3.10 HeP17 0.0041 341
HeS45 0.0300 3.20 HePS8 0.0050 348
HeS6 0.0200 3.16 HeP9 0.0100 347
HeS7 0.0312 3.16 HeP91 0.0150 3.47
HeS8 0.0400 3.16 HeP12 0.3300 3.45
HeS9 0.1000 3.16

HeS91 0.1300 3.16

HeS92 0.1000 4.00

HeS14 0.4400 3.18

Schaad [16] is of particular interest in connection with the present study. Their
results, which appeared when the present work was nearly completed, have all
been obtained at an LD. of 1.4 a.u. for HeH™ using basis sets consisting only of s
type Gaussian functions.

Method

The Gaussian orbital calculations have been performed using the Roothaan
self-consistent-field method [14] as described previously [9]. A brief survey of
earlier work using Gaussian orbitals has already been given [9] and will not be
repeated here. The basis set was restricted to s- and p,-type Gaussians, of the form
N -exp(—ar?) and Nq exp(—ar?), respectively, where g may be x, y, or z. The
bond in HeH™ was considered to be directed along the X-axis with the helium
atom at the origin and internuclear distances between 1.30 and 1.50 a.u. were
employed. In the labelling of the basis sets as found in the tables, the first four
figures indicate the number of s, p,, p,, and p, type functions of helium, the
second four figures those on hydrogen, respectively. The largest set contained 37
functions. The quasi-optimization technique which was used in the present work
involved two variables, the value of the smallest exponent in either or both of the
s and p type functions, and the multiplicative factor which operated to generate
the remainder of the particular set of exponents. The various sets of exponents
employed are summarized in Table 2.

Results and Discussion

Over two hundred separate calculations were performed on the helium
hydride molecular ion. A portion of the results are given here. Full details may be
obtained from the author. All calculations have been iterated to an accuracy of
10~ * a.u., except those marked by an asterisk, which have been iterated to 10~ % a.u.
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Table 7. Orbital energy and dipole moment for the 21 basis function set at R = 1.455 a.u.
Jor different sets of exponents

Exponent Set Numbers —Total energy Uy — Orbital energy
(a.u.) (Debye) (a.n)
HeS2, HeP2,H1 2927151 2.512087 1.6348
HeS3, HeP5,H1 2.928989 2.516825 1.6357
HeS1, HeP2,H1 2.929021 2512736 1.6364
HeS4, HeP2,H1 2929122 2.515126 1.6360
HeS3, HeP2,H1 2.929736 2.512707 1.6367
HeS3, HeP4,H1 2.929899 2.516333 1.6357
HeS42, HeP3,H1 2.930054 2.514477 1.6358
HeS3, HeP1,H1 2.930072 2.515155 1.6357
HeS45,HeP3,H1 2.930131 2.514618 1.6358
HeS43, HeP3,H1 2.930173 2.514756 1.6357
HeS3, HeP3, H1 2.930192 2.513466 1.6366
HeS41,HeP3,H1 2.930193 2.513491 1.6366
HeS44, HeP3,H1 2.930206 2.514672 1.6358

Tables 3 to 6 list the energies found for various basis sets and various internuclear
distances. Table 7 gives a representative number of values of dipole moment and
orbital energy.

From the energy values found, it appears that a multiplicative factor of
approximately 4 yields the lowest energy of those sets of exponents considered.
The set of exponents which gave the “best” energies with the 21 functions can be
seen to yield a minimum energy of —2.93019 a.u. in the range from 1.455 to
1.460 bohr. This energy value is in reasonable agreement with the results of
previous workers. However, the energy value obtained here for the minimum is
about 3- 1072 a.u. higher than that of Peyerimhoff [12] and 1.3 - 10~ 2 a.u. higher
than the values of Harris [ 5] and Michels [8], the latter two values being obtained
at 1.44 bohr.

Table 5 illustrates the results of a 31 basis set obtained from the 21 basis set
by addition of p functions to the helium atom in the ¥ and Z directions. Table 6
indicates that the addition of p functions in the Y and Z direction to the hydrogen
atom of helium hydride in order to pass from the 31 basis function set provides
no great advantage from an energy point of view. Only a limited examination of
exponents was done for the 37 basis function set when it appeared that little
benefit could be gained by so doing.

It should be mentioned that, considering the method employed in the present
work for varying the exponents, it is not impossible that only relative minima
have been found. However, it is believed that this is unlikely. Further, in a calcula-
tion in which only the optimized wave function was sought, it is probable that
the optimization tests would be made at one fixed interatomic distance, at least
until the exponents fell close to the optimum ones. In the present work, more
empbhasis has been placed on the path to the optimum wave function than on the
optimized function itself. Hence, a number of different interatomic distances
have been considered at each step.

In Table 7, the orbital energy and dipole moment for helium hydride (with the
previously mentioned coordinates) obtained for R=1.455a.u.,, with 21 basis
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functions and the exponents given in Table 4, are shown. In addition the results
of some calculations which were performed only at 1.455a.u. are also shown.
These have helium s exponents labelled HeS41 to HeS45. The lowest energy
obtained with the 21 basis function sets, and in fact in all the calculations, is
—2.930206 a.u. which was found at R = 1.455 a.u.

Hopefully the present study has provided some indication of the manner in
which wave functions constructed from Gaussian functions are altered with
change in the size of basis set, and particularly with the values of exponents used.
Further, it is hoped that this work, in connection with future studies already in
progress, may furnish sufficient information for the establishment of simple
empirical rules for finding near-optimum exponents.
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